
A MONTE CARLO ASSESSMENT OF THE STABILITY OF 
LOG- LINEAR ESTIMATES IN SMALL SAMPLES 

Mark Evers, Duke University 
N. Krishnan Namboodiri, University of North Carolina at Chapel Hill 

Any reasonably complex contingency table 
will frequently contain empty or zero cells, 
merely due to sampling fluctuations. Of course, 
the number of zero cells is negatively related to 
sample size, and positively related to the number 
of cells in the contingency table. Thus, theoret- 
cally, zero cells can be "removed" either by ob- 
taining a larger sample or by collapsing categor- 
ies of some of the variables. However, the typi- 

cal situation is one in which the investigator has 
only one sample of a given size, and in which 
collapsing the table is an unattractive alternat- 
ive. Thus, we have the need for techniques to 
handle contingency tables with empty cells. 

In a situation where there are only a few 

zero cells, Grizzle, Starmer, and Koch (1969) 

recommend inserting in each empty cell the value 

1 /r, where r is the number of response categor- 
ies. For the iterative maximum likelihood pro- 
cedure developed by Goodman and others, the 
following procedure has been suggested in the 
literature. For each model of interest, exam- 
ine the marginals to be fitted, and discard all 
models that require fitting one or more zero 
marginals. This obviously is not a satisfactory 
strategy since investigators may wish to estim- 

ate parameters for models chosen on a priori 
grounds. Several options are open if the chosen 

model requires fitting empty marginals. (1) Use 

the technique advocated by Grizzle, Starmer and 
Koch, namely add the quantity 1/r to zero cells 
and analyze the data with their method. (2) Re- 

place zero cells with small numbers, such as 
/r, and analyze the data using the iterative 

maximum likelihood technique. (3) Follow the 
strategy suggested in Bishop et al. (1975), chap- 

ter 12, which requires the assumption of a 
priori cell probabilities. 

In this paper we examine strategy (2) in an 

effort to shed light on the resulting biases in 

parameter estimates. We refer to the small 

values added to observed zero cells as correction 
factors. We address the following questions, 

using the iterative maximum likelihood proced- 
ures as programmed in ECTA (Fay and Goodman 1973). 
First, does the size of the correction factor 
systematically affect the parameter estimates 
one obtains? Second, does the number of zero 
cells in the contingency table, which is closely 

related to sample size, influence the behavior 
of these estimates? 

STUDY DESIGN 

From the 1 -in -100 Public Use Sample (PUS) 

of the 1970 U.S. Census, we first obtained data 

for about 219,000 women aged 14 to 44 years. 
From this data set, we created a four -way con- 
tingency table of children ever born by eduCa- 
tion by race by age. In this table, children 
ever born had four categories (0, 1, 2 -4, 5 +), 
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education had three categories (less than 12 
years, 12 years, more than 12 years), age had 
three categories (14 -24, 25 -34, 35 -44), and race 
had two categories (white, nonwhite), thus giving 
a table with 72 cells. We specified a hierarch- 
ical model, which can be described in terms of 

the following three -way marginals to be fitted: 
children ever born by education by race, children 
ever born by age by race, and education by age by 
race. This model has 24 degrees of freedom and 
has a total of 48 independent parameters. In 

this paper, we examine only the 14 parameters 
which had the largest estimated values. Table 1 
shows these parameter estimates, which we term 
the full sample estimates, since they are based 
on the full sample of women from the PUS. 

From this full sample of women, we drew 
several sets of independent random samples: 100 

samples of size 250, 100 samples of size 500, and 
100 samples of size 1000. For each of these 300 
subsamples, we constructed a contingency table 
with dimensions and categories identical to the 
table for the full sample of women described 
above. Every one of these contingency tables 
contained a number of empty cells, ranging from 
a minimum of 6 to a maximum of 37. For each of 
the subsample contingency tables, we used three 
different correction factors to replace the zero 
cells --.02, .2, and .5- -and we used ECTA to ob- 
tain parameter estimates for the model that was 
fitted to the full sample of data. Thus, this 

design systematically varies sample size and 
correction factors, although the three different 
correction factors were applied to the same set 
of data. Because there are 100 samples in each 

set, we also have a reasonable amount of varia- 
tion in the number of zero cells in each set. 

The particular model we chose to fit to 
these sets of data did not fit well for the full 

sample of women. The chi - square value was 3304, 
which with 24 degrees of freedom has a proability 
of less than .001. It is therefore likely that 

whatever variation in the parameter estimates 

that we observe for the different subsamples may 
in fact be partly attributable to some unknown 
quantity of specification error. In order to 

deal with this problem, we took the expected cell 
counts based on the model fitted to the full 
sample, and simulated data which paralleled the 

same study design that was used for the data from 
the PUS. That is, we simulated 100 samples of 
each of the three sample sizes, and for each 

sample, applied each of the three correction fac- 

tors, and used ECTA to obtain parameter estimates 

for our model. 

RESULTS 

Table 2 shows how the estimates of R, the 

main effect due to race, vary across sample size, 
correction factor, and number of zero cells in 



the contingency table. Results are shown separ- 

ately for the simulated data, and for the data 

drawn from the PUS. The bias of the estimates 

is calculated as the mean value of subsample es- 
timates minus the full sample value. Thus, the 

value of .508 in the table (top of column 5) 
refers to the bias for the 61 samples of size 
250 in the simulated set, which have between 19 
and 28 zero cells, and which have the correction 
factor of .02 added to the zero cells. For this 

set of data, the bias is .508, indicating that 
the mean of the small sample parameter estimates 
was .508 higher than 1.108, the full sample 
value for R. The standard deviation for this 
group of 61 estimates is .273. 

There are several patterns for both the 
bias and the standard deviation which deserve 

to be noted, since these are similar to the 
patterns for the other estimates we examined. 

First, the correction factor is related to 
the bias in the following way: overall, the .02 
correction tends to produce a positive bias, the 
.5 correction tends to produce a negative bias, 
and the .2 correction tends to produce the 
smallest bias, which hovers close to zero. 

This finding makes sense, since, other 

things being equal, a large increment to zero 

cells would reduce the heterogeneity of a table 

and attenuate the value of an effect or a rela- 

tionship. Hence, a large increment such as .5 

would underestimate a positive effect and give 
a negative bias. On the other hand, a very 
small correction factor such as .02 clearly 

overestimates the effect, giving a positive 
bias. 

The second observation about the pattern of 
bias in Table 2 is that for the .02 and .5 cor- 

rections, the amount of bias becomes smaller 

with increasing sample size. This apparent 

effect of sample size is most likely due to the 
number of zero cells in the table, which is 
strongly and negatively related to sample size. 
Other things being equal, an increase in the 
number of zero cells must be offset by larger 
entries in the remaining cells, giving a larger 
value for an effect or relationship. Since 

larger samples have fewer zero cells, we would 
expect the estimates to tend toward the full 
sample estimates. This effect is clear for the 
.02 correction factor, since the bias, or differ- 
ence between the subsample estimates and the 
full sample estimate, becomes smaller with in- 
creasing sample size. 

However, for the .5 correction factor, where 

the mean of the subsample estimates is consist- 
ently less than the full sample value, the bias 
becomes less negative with increasing sample 
size. Thus, the subsample estimates are getting 
larger with sample size, rather than smaller as 
we would predict by knowing the number of zero 

cells alone. We argue that the observed trend 
is due to the attenuating effect of the .5 cor- 

rection factor. For larger samples, where there 
are fewer zero cells, there is less chance for 
this increment to attenuate the size of the es- 
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timates. 

The third observation about the pattern of 
bias in Table 2 concerns the effect of zero cells, 
which we can detect by looking at the trend of 
bias within sample size. The bias generally be- 
comes more positive as the number of zero cells 
increases, which gives support to the earlier 
argument that an increase in the number of zero 
cells will tend to increase the size of the es- 
timate. Moreover, this effect of the number of 
zero cells is a good deal stronger for the .02 

increment than for the .2 increment, and weakest 
of all for the .5 increment. It seems that the 
effect of the number of zero cells on the estima- 
tes simply cannot operate as strongly when the 
increment to these zero cells is larger, but the 
effect is very clear when the increment is close 
to zero. 

The fourth observation about the pattern in 
Table 2 concerns the standard deviations of the 
estimates. We find a strong and negative effect 
of the size of the correction factor on the magni- 
tude of the standard deviation. This finding is 

expected, since we know that larger corrections 
give the estimates more stability. 

The last observation about the table is that 
we can find no major or systematic differences 
between the simulated data and the data from the 
Public Use Sample -- specification error has no 
apparent effect on the patterns we observe. 

The relation of the size of the estimates, 
sample size, and the correction factor, is shown 
in more detail in Table 3, for estimates of R 
based on the Public Use Sample. For this effect, 
the correction factor of .2 is likely to give the 
least bias for the two smaller sample sizes. 
Indeed, for sample size 250, the .02 and .5 in- 
crements do not approximate the full sample esti- 
mate of 1.108 for any of the 100 samples. More- 
over, the .02 increment yields what most investi- 
gators would consider an unacceptably large 
amount of variation in the sampling distribution 
of the estimate. If one is willing to tolerate 
the slightly large standard deviation for the .2 

correction factor, this correction yields estima- 
tes with relatively small bias, regardless of 
sample size. That the estimates based on a sample 
size of 250 can be this good is quite surprising, 
since the number of zero cells is so large, 

ranging from 19 to 37 out of a total of 72 cells 
in the table, and since the average frequency 
per cell is only 3.5. 

Thus far we have considered only one para- 

meter estimate out of the 14 we are examining 
here. One would naturally ask whether the find- 
ings just described can be generalized to the 

other effects, particularly where they are smaller 

in value than the estimate of R we have just dis- 

cussed. The answer is that, generally, we find 

the same pattern for other effects. Evidence in 

support of this answer is found in Table 4, which 

shows the pattern of bias for four other para- 

meters estimates, which differ markedly in size 
from one another. Close inspection of the table 

will show that the relationship of bias to sample 



size follows the same pattern as we described 
earlier for the estimate of R. Regarding the 
correction factor, the value of .2 generally 

gives the least bias. In contrast to the find- 

ing for the estimate of R, this pattern holds 
even at the largest sample size. 

In order to more systematically assess the 
apparent amount of bias that is linked with the 
three correction factors, we examined the rela- 

tive amount of bias for each of the 14 parameter 
estimates we are considering. For each sample 
size and for both simulated and real data, we 
compared the amount of bias that resulted from 
using each of the three correction factors, and 
ranked the three factors as yielding high, medium, 

or low bias, for each estimate. The results of 

this tally are shown in Table 5. Across all 

sample sizes, the .2 correction factor consist- 
ently is the least likely of the three correc- 
tion factors to give the highest amount of bias, 
and in all except the simulated data of sample 
size 250, the .2 correction factor is most likely 
to give the least bias. The .02 and .5 correc- 

tion factors are both very likely to give esti- 
mates with a high degree of bias. 

The results reported here, of course, con- 
cern only one method of dealing with zero cells 
in contingency tables. We are currently under- 
taking a Monte Carlo investigation to compare 
the bias of the estimates and validity of good - 
ness -of -fit tests associated with the correc- 

tion procedure described in this paper with 
those associated with the "pseudo -Bayes" proced- 
ures described in chapter 12 of Bishop et al. 

(1975). 

TABLE 1 
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SELECTED PARAMETER ESTIMATES FOR MODEL FITTED TO 
CONTINGENCY TABLE BASED ON 1 -in -100 PUBLIC USE SAMPLE 

Description of Parameter 
Full Sample 
Value (X) 

C3: 

Al: 

A2: 

R 

E2: 
E1R: 

C1A1: 

C2A1: 

C1A2: 

C2A2: 

C1AiR: 
C3A1R: 

C, third component 
A, first component 
A, second component 
R 
E, second component 
E x R, first component 
C A, first component 
C x A, second component 
C x A, fourth component 
C x A, fifth component 
C x E, first component 
C x E, second component 
C x A x R, first component 
C x A x R, third component 

1.0214 
-.5808 
.3472 

1.1083 
.3613 

-.3136 
1.0385 
.9047 

-.3787 
-.2622 

- .4991 
-.2654 

.3232 
-.2105 

Note: C = children ever born, A = age, E = education, R = race. 
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TABLE 2 

BIAS AND STANDARD DEVIATION OF ESTIMATES OF Ra, BY CORRECTION FACTOR, 
SAMPLE SIZE, TYPE OF DATA, AND NUMBER OF ZERO CELLS 

Correction Factor 

Sample 
Size 

Type of 
Data 

No. of 

0 Cells 

.02 .20 .50 

(N) Biasb 
Std. 

Dey. Bias 

Std. 

Dev. Bias 
Std. 

Dev. 

250 Simulated 1928 .508 .273 -.117 .086 -.325 .056 (61) 
29 -31 .876 .179 .005 .060 -.261 .043 (29) 
32 -37 .985 .167 .018 .080 -.260 .044 (10) 

250 PUS 19 -28 .596 .290 -.108 .056 -.316 .043 (14) 
29 -31 .733 .192 -.051 .058 -.293 .040 (36) 

32 -37 .980 .197 .021 .067 -.260 .041 (50) 

500 Simulated 13 -19 .248 .207 -.019 .081 -.145 .055 (50) 

20 -21 .448 .199 .056 .070 -.108 .050 (24) 

22 -27 .546 .185 .067 .058 -.117 .037 (26) 

500 PUS 13 -19 .268 .173 -.017 .065 -.150 .046 (26) 
20 -21 .460 .231 .059 .088 -.103 .063 (30) 
22 -27 .672 .236 .119 .060 -.079 .040 (44) 

1000 Simulated 6 -11 .055 .131 -.014 .071 -.061 .056 (47) 

12 -13 .178 .114 .050 .056 -.025 .047 (29) 
14 -19 .335 .172 .114 .081 .006 .056 (24) 

1000 PUS 6 -11 .074 .145 .002 .068 .050 .051 (29) 
12 -13 .185 .129 .049 .068 -.022 .054 (34) 
14 -19 .251 .145 .088 .060 -.003 .046 (37) 

aFull sample value for R: = 1.108 

bBias = Mean value of subsample estimates minus full sample value. 

TABLE 3 

FREQUENCY DISTRIBUTION OF SUBSAMPLE ESTIMATES OF Ra, 
BY CORRECTION FACTOR AND SAMPLE SIZE, PUS DATA 

Size of 
Estimate 

Sample Size 
250 500 1000 

.02 .20 .50 .02 .20 .50 .02 .20 .50 

0.60 -0.79 0 0 29 0 0 0 0 0 0 

0.80 -0.99 0 19 71 0 2 45 5 3 8 

1.00 -1.19 0 76 0 5 59 55 30 65 91 

1.20 -1.39 2 5 0 19 39 0 39 32 1 

1.40 -1.59 8 0 0 31 0 0 25 0 0 

1.60 -1.79 17 0 0 20 0 0 1 0 0 

1.80 -1.99 24 0 0 15 0 0 0 0 0 

2.00 + 49 0 0 10 0 0 0 0 0 

Total 100 100 100 100 100 100 100 100 100 

Mean 1.945 1.085 0.828 1.611 1.173 1.003 1.278 1.158 1.085 

Biasb .837 -.023 -.280 .503 .065 -.105 _.170 .050 -.023 

Std. Dev. .252 .078 .046 .273 .089 .057 .154 .073 .053 

aFull sample value for R: = 1.108 

bBias = Mean value of subsample estimates minus full sample value. 
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TABLE 4 

FOR FOUR PARAMETER ESTIMATES OF DIFFERENT SIZE, 
BY SAMPLE SIZE, TYPE OF DATA, AND CORRECTION FACTOR 

Parameter 

Sample Type of Correction C3 C2A1 C1E1 E1R 

Size Data Factor (a= 1.021) (a =.905) (a= -.499) (a= -.314) 

250 Simulated .02 .244 .100 -.178 -.136 

.20 -.207 -.319 .044 .085 

.50 -.365 -.473 .138 .152 

250 PUS .02 .115 .155 .113 -.122 
.20 -.234 -.303 .097 .121 

.50 -.354 -.422 .119 .189 

500 Simulated .02 .254 .170 -.107 -.121 
.20 -.096 -.178 .010 .044 

.50 -.241 -.328 .073 .107 

500 PUS .02 .227 .323 .035 -.096 
.20 -.120 -.155 .046 .066 

.50 .253 -.340 .057 .129 

1000 Simulated .02 .161 .156 -.065 -.057 
.20 -.031 -.075 -.011 .017 

.50 -.129 -.193 .027 .057 

1000 PUS .02 .197 .164 -.011 .122 

.20 -.013 -.085 .028 .085 

.50 -.116 -.214 .053 .072 

aBias = Mean value of subsample estimates minus full sample value. 

TABLE 5 

FREQUENCY WITH WHICH DIFFERENT CORRECTION FACTORS RESULT IN HIGH, 
MEDIUM, OR LOW BIAS ACROSS 14 PARAMETER ESTIMATES 

Sample Size 
250 500 1000 

Type of Correction Amount of Bias Amount of Bias Amount of Bias 

Data Factor High Medium Low High Medium Low High Medium Low 

Simulated 

PUS 

.02 3 2 9 7 1 5 5 6 3 

.20 0 9 5 0 5 9 1 2 11 

.50 11 3 7 7 9a 4 lb 

.02 4 4 6 5 5 4 8 3 3 

.20 0 6 8 0 6 8 0 6 8 

.S0 10 4 0 9 4 1 6 5 3 

aFor one parameter, correction factors of .02 and .50 tied for "high" bias, 

.20 was assigned "low" bias. 

bFor one parameter, correction factors of .20 and .50 tied for "low" bias, 

.02 was assigned "high" bias. 

891 


